Trust Calibration
Real-time trust calibration analysis — the core of EU AI Act Article 14 compliance.
POST /calibrate
Analyze a single decision for trust calibration patterns.
Request
{
"user_id": "string",
"ai_recommendation": "string",
"user_decision": "string",
"context": "string",
"confidence": 0.0-1.0,
"timestamp": "ISO8601"
}user_id
string
✅
Unique user identifier
ai_recommendation
string
✅
What the AI recommended
user_decision
string
✅
What the user decided
context
string
❌
Additional context
confidence
number
❌
AI confidence (0-1)
timestamp
string
❌
ISO8601 timestamp
Response
Calibration Categories
WELL_CALIBRATED
Appropriate trust level
OVERTRUSTING
Automation bias detected
UNDERTRUSTING
Algorithm aversion detected
INCONSISTENT
Erratic trust patterns
Example
POST /trust-score
Calculate aggregate trust score for a user over a time period.
Request
user_id
string
✅
Unique user identifier
time_period
string
❌
Time window (default: 30d)
Response
Example
GET /trust-score/trend
Retrieve historical trust score trend for trend analysis (Colorado AI Act § 6-1-1303).
Request
user_id
string
✅
Unique user identifier
days
number
❌
Number of days (default: 30)
Response
Example
SDK Examples
JavaScript
Python
Next: Bias Detection API
Last updated