Trust Calibration

Real-time trust calibration analysis — the core of EU AI Act Article 14 compliance.

POST /calibrate

Analyze a single decision for trust calibration patterns.

Request

{
  "user_id": "string",
  "ai_recommendation": "string",
  "user_decision": "string",
  "context": "string",
  "confidence": 0.0-1.0,
  "timestamp": "ISO8601"
}
Field
Type
Required
Description

user_id

string

Unique user identifier

ai_recommendation

string

What the AI recommended

user_decision

string

What the user decided

context

string

Additional context

confidence

number

AI confidence (0-1)

timestamp

string

ISO8601 timestamp

Response

Calibration Categories

Category
Description

WELL_CALIBRATED

Appropriate trust level

OVERTRUSTING

Automation bias detected

UNDERTRUSTING

Algorithm aversion detected

INCONSISTENT

Erratic trust patterns

Example


POST /trust-score

Calculate aggregate trust score for a user over a time period.

Request

Field
Type
Required
Description

user_id

string

Unique user identifier

time_period

string

Time window (default: 30d)

Response

Example


GET /trust-score/trend

Retrieve historical trust score trend for trend analysis (Colorado AI Act § 6-1-1303).

Request

Param
Type
Required
Description

user_id

string

Unique user identifier

days

number

Number of days (default: 30)

Response

Example


SDK Examples

JavaScript

Python


Next: Bias Detection API

Last updated